迭代器

Mr.Hope ... 2020-05-29 Python 大约 2 分钟

我们已经知道,可以直接作用于 for 循环的数据类型有以下几种:

一类是集合数据类型,如 list、tuple、dict、set、str 等;

一类是 generator,包括生成器和带 yield 的 generator function。

这些可以直接作用于 for 循环的对象统称为可迭代对象: Iterable。

可以使用 isinstance()判断一个对象是否是 Iterable 对象:

>>> from collections.abc import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
1
2
3
4
5
6
7
8
9
10
11

而生成器不但可以作用于 for 循环,还可以被 next() 函数不断调用并返回下一个值,直到最后抛出 StopIteration 错误表示无法继续返回下一个值了。

可以被 next() 函数调用并不断返回下一个值的对象称为迭代器: Iterator

可以使用 isinstance() 判断一个对象是否是 Iterator 对象:

>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
1
2
3
4
5
6
7
8
9

生成器都是 Iterator 对象,但 list、dict、str 虽然是 Iterable,却不是 Iterator

把 list、dict、str 等 Iterable 变成 Iterator 可以使用 iter() 函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
1
2
3
4

您可能会问,为什么 list、dict、str 等数据类型不是 Iterator?

这是因为 Python 的 Iterator 对象表示的是一个数据流,Iterator 对象可以被 next() 函数调用并不断返回下一个数据,直到没有数据时抛出 StopIteration 错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过 next()函数实现按需计算下一个数据,所以 Iterator 的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator 甚至可以表示一个无限大的数据流,例如全体自然数。而使用 list 是永远不可能存储全体自然数的。

# 小结

凡是可作用于 for 循环的对象都是 Iterable 类型;

凡是可作用于 next() 函数的对象都是 Iterator 类型,它们表示一个惰性计算的序列;

集合数据类型如 list、dict、str 等是 Iterable 但不是 Iterator,不过可以通过 iter() 函数获得一个 Iterator 对象。

Python 的 for 循环本质上就是通过不断调用 next() 函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass
1
2

实际上完全等价于:

# 首先获得Iterator对象

it = iter([1, 2, 3, 4, 5])

# 循环

while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break
1
2
3
4
5
6
7
8
9
10
11
12
13